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Abstract—Mutation Analysis (MA) is a fault-based simulation tech-
nique that is used to measure the quality of testbenches for mutant
detections where mutants are simple syntactical changes in the designs. A
mutant is said living if its error effect cannot be observed at the primary
outputs. Previous works mainly focused on the cost reduction in the
process of MA, because the MA is a computation intensive process in the
commercial tool. For the living mutants, to the best of our knowledge, the
commercial tool has not addressed the pattern generation issue yet. Thus,
this paper presents a Genetic Algorithm to generate patterns for detecting
living mutants such that the quality of the verification environment is
improved. The experimental results show that more living mutants can
be detected after adding the generated patterns in the testbench.

I. INTRODUCTION

Functional verification, a process to ensure that the design specifi-

cation and the implementation are consistent [6] [8] [24]∼ [27] [29],

is an important process in the design flow. As designs become larger,

functional verification process becomes increasingly more complex,

and consumes more than 70% of the design effort. This percentage

continues to increase with the growth of design complexity. There-

fore, functional verification is a critical issue for designers.

Coverage metrics were proposed to assess the verification quality

of a design. It can be divided into two categories: structural coverage

(code coverage) [19] [22] and functional coverage [11] [12] [22].

Structural coverage identifies the percentage of the design that has

been executed by the testbench. This indicator can help designers

improve the testbench quality. However, structural coverage does

not consider stimuli’s abilities for propagating the error effects

to observation locations. Therefore, the higher scores in structural

coverage metrics do not indicate the better qualities of the patterns.

On the other hand, functional coverage considers the semantic

interpretation of the functionality to exercise the design. The func-

tional coverage metric is defined and evaluated by designers based on

the details in the design specification. However, functional coverage

does not check unexpected or inappropriate operations. Thus, it is a

metric that provides a feedback on how well the stimuli cover the

operations described in the specification, but is not a good measure

for the evaluation of the quality and completeness of the verification

environment.

Mutation Analysis (MA) is a fault-based technique that can im-

prove the quality of the verification environment, which originated

from software engineering field [9] [14] in the early 1970s. By

injecting artificial faults into the original implementation, designers

can check whether the verification environment can differentiate

the faulty and original designs [5]. The MA approach is based on

two hypotheses: the Competent Programmer Hypothesis [4], and

the Coupling Effect Hypothesis [9]. The Competent Programmer

Hypothesis states that programmers usually develop programs that

perform the intended tasks with some errors. However, these errors
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are simple and can be corrected by small syntactical changes. The

Coupling Effect Hypothesis states that complex errors are coupled

from simple errors in such a way that the pattern set for detecting

all simple errors in a program will also detect a high percentage of

complex errors [20].

A mutant is an operation that is changed in the program. Given a

program statement: a = b & c, if we accidentally type “|” instead of

“&” in this statement, a mutant is injected into the original program.

We say that a pattern is able to activate a mutant if the output value

of the original statement is not equal to that of the mutated statement.

If these different values are observed at the primary outputs (POs),

we say the mutant is killed; otherwise, living, which indicates the

weakness of the verification environment.

There is some research related to MA that mainly aims for cost

reduction [17]. This is because MA needs high computation expenses.

The cost reduction usually deals with simulation reduction or mutant

reduction. The work [18] proposed a preprocessing technique for

accelerating MA process. It analyzed the error propagation ability of

each mutant before performing the simulation in RTL designs. The

analyzed results can be used to reduce the simulation cost of MA.

The work [15] proposed a mutation-based mutant ordering heuristic

to reduce the effective mutant numbers for Simulink models.

There are other works related to MA. The work [3] implemented

an MA approach over RTL designs for testbench qualification. It

measures and drives the quality improvement of all aspects of

functional verification. In [23], the authors proposed an approach for

system testability verification based on an adaptation of the Weak

Mutation analysis technique [16]. Weak Mutation assumes that each

statement in a design is an observation point. Thus, if a mutant causes

the output of a statement changed, the mutant is also said killed

under the Weak Mutation. The work [23] translated the mutants in

the RTL designs as the faults in the gate-level netlist and generated

the patterns for detecting the faults based on the Weak Mutation.

The work [28] proposed a functional test generation approach where

simulation results are used to guide the generation of additional test

patterns.

In this work, we aim at generating the patterns for detecting the

living mutants. However, we do not directly target the living mutants

at RTL designs due to high complexity1 . On the contrary, since the

living mutants in the RTL designs represent the undetected faults in

the gate-level netlist after the synthesis [23], we generate patterns for

the undetected faults in the gate-level netlists instead. Furthermore,

we exploit the divide and conquer concept to deal with the pattern

generation problem. To detect a fault, there are many conditions in the

fault propagating path that have to be simultaneously satisfied. For an

undetected fault, however, some conditions may have been satisfied

via random simulations. Thus, we propose a genetic algorithm (GA)-

1Complex conditions and large ranges of variables in the RTL designs
increase the complexity of mutant detection.
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Fig. 1. (a) Modeling the OR to AND mutant as a stuck-at 0 fault at the input
a. (b) Modeling the AND to OR mutant as a stuck-at 1 fault at the input b.

based method, which collects/combines/evolves these useful sub-

patterns that satisfy some conditions, to obtain new patterns such

that more living mutants can be detected after adding the generated

patterns in the testbench.

II. BACKGROUND

A. Mutant Modeling

A mutant is an injected error in the RTL designs, and it could be

translated as stuck-at faults in the gate-level netlist [23]. Thus, a living

mutant escaping from detection in the testbench can be represented

as hard-to-detect stuck-at faults in the netlist. Furthermore, according

to the Coupling Effect Hypothesis in the MA, we can only consider

the single stuck-at fault model instead of the multiple stuck-at fault

model.

Here we propose a method that models a mutant as a stuck-at fault.

Here we only consider three types of mutants.

1) OR to AND mutant: We assume an OR gate is replaced with an

AND gate. To distinguish these two operations, their output values

have to be different. In Fig. 1(a), assume we set the output of the

OR gate as 1, and set that of the AND gate as 0, then we can derive

an input pattern abc = 100 that satisfies the output values of the OR

gate and the AND gate. Thus, we can model this OR to AND mutant

as the input a stuck-at 0 fault. This is because after detecting this

stuck-at 0 fault, we can get the pattern abc = 100 and detect this OR

to AND mutant.

2) AND to OR mutant: Similarly, in Fig. 1(b), we can model this

AND to OR mutant as the input b stuck-at 1 fault. This is because

after detecting this stuck-at 1 fault, we can get the pattern abc = 101

and detect this AND to OR mutant.

3) NOT to BUF mutant: Similarly, we model this NOT to BUF

mutant as the input stuck-at 1 fault.

B. Error Propagation Analysis

Error Propagation Analysis (EPA) is a technique that statically

analyzes the structures of the designs and evaluates the error propa-

gation ability for a given mutant. Before detailing the EPA concept,

we first introduce the Mutant Controllability (MC) and Decreasing

Rate (DR), which will be used in the EPA. The MC represents the

changing probability of each signal. For the signal on the output of

the mutated gate, its MC value is set 1. The MC value calculation

can be found in [18]. When the MC value of the signal becomes

0, that means the mutant effect does not influence this signal. The

higher MC value of a signal means that the mutant effect is able to

change this signal with a higher probability. After calculating the MC

value for every signal on every path, we derive the DR value of each

signal from its MC value. The DR value represents the degree of the

error-masking effect from this signal. The greater DR value means

that the error-masking effect is stronger. We calculate the DR value

for every signal along each path to the POs, and find out a path that

has smaller DRs for better propagating the mutant effect. The DR

value calculation can be found in [18].

C. Mutant Propagation Path Ranking

For a living mutant that has many propagation paths to the POs,

we need to focus on finding a “good” path for propagating the mutant

effect. Thus, we apply the EPA technique [18] as mentioned to rank

Fig. 2. An example for ranking paths based on the value of DR.

Fig. 3. (a) The construction of the AND gate tree. (b) The details in the
square of (a).

the paths such that a path having a higher probability to propagate

the mutant effect will be selected first.

For example, in Fig. 2, the DR values are shown on the nodes.

For every path, we select the node with the largest DR value, and

rank the paths based on this value in an ascending order. With having

this path ranking, then we sequentially examine each path within a

run time limit. If one path fails, we select the next one until the fault

effect is propagated out. In Fig. 2, the largest DRs in path1 to path3

are 0.65, 0.79, and 0.57, respectively. Thus, the paths are ranked as

path3 > path1 > path2.

III. THE PROPOSED APPROACH

A. AND Gate Tree Construction

After modeling a living mutant as a fault and selecting a path

for fault effect propagation, we construct an AND gate tree with

respect to this path. This AND gate tree is used for justifying whether

the fault effect is propagated out. To propagate the fault effect, two

conditions have to be held simultaneously. First, the fault has to be

activated. Second, all side inputs on the propagating path have to be

set as the non-controlling values with respect to the gate types. 1{0}
is the non-controlling value of an AND{OR} gate.

In Fig. 3, assume the bold line is the fault propagation path from

the fault to a PO. We build an AND gate tree from the side inputs

of the fault propagation path as follows: for a side input of an AND

gate a on the fault propagation path, we directly connect it to the

AND gate V. However, for a side input of an OR gate b on the fault

propagation path, we connect it to the AND gate V with an inverter.

Based on this construction, we can realize that the 1 value at the

root gate of the AND gate tree indicates that the fault is detected;

otherwise, the fault is undetected. However, by analyzing the internal

values of this AND gate tree, we can identify the side inputs that

cause the fault undetectable. That is, the leaf nodes having 0 value in

the AND gate tree. On the other hand, we can also know that which

of the side inputs have been assigned the non-controlling values in

the random simulations. Thus, we can collect the sub-patterns with

respect to these side inputs for further use in the GA algorithm. The

details will be discussed in the next subsection.

B. Genetic Algorithm

GA [13] is a searching technique that emulates biological evolution

for having an optimal solution, and has been used in many research

directions [7] [21]. The proposed GA is applied to create patterns

that can detect the fault.

The proposed GA consists of five steps, and they are Record,

Creation, Inversion, Crossover, and Mergence & Mutation.
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Fig. 4. (a) Creation. (b) Inversion.

Fig. 5. An example for the step of Crossover.

1) Record: After the random simulations, without loss of gener-

ality, we assume that the random patterns cannot detect the fault.

However, based on the internal values of the AND gate tree, we can

record some sub-patterns that propagate the fault to the next gate.

We name these sub-patterns recorded-positive-sub-patterns. We also

record some sub-patterns that do not propagate the fault to the next

gate, which are also named recorded-negative-sub-patterns.

2) Creation: In this step, we generate additional new sub-patterns

from the recorded-positive-sub-patterns. For example in Fig. 4(a),

assume the recorded-positive-sub-pattern is <I1∼I7> = <0000001>.

A new sub-pattern <I1∼I7> = <1001001> that causes the same side

inputs in the AND gate tree can be created based on the output values

of gate A ∼ gate E.

3) Inversion: In this step, we use the recorded-negative-sub-

patterns to generate new sub-patterns to increase the diversity of the

sub-patterns. For example in Fig. 4(b), assume the recorded-negative-

sub-pattern is <I1∼I7> = <0000001>, the corresponding output

values of gate A ∼ gate E are <00001>. We then sequentially

invert these output values and backward justify the input values.

Thus, the input values of I1 and I2 are both changed to 1 when the

output of gate A is changed from 0 to 1. However, there might exist

some situation that the input values are conflict when performing this

backward justification. For example, if gate E is changed from 1 to

0, then both I6 and I7 have to be assigned 0. However, I6 = 0 is

conflict with I6 = 1 that is a necessary assignment of gate D’s 1

value. Hence, we will keep the output value of gate E intact under

this situation.

4) Crossover: For these generated sub-patterns, they may have

some overlapped inputs. Thus, we use a crossover operation to

obtain more sub-patterns in the overlapped inputs for increasing the

diversity. For example in Fig. 5, b and c are the overlapped inputs of

two sub-patterns and they are 0010 and 1100, respectively. Assume

the gates in this overlapped region are gates E and F, then EF = 01

for b and EF = 10 for c. Our crossover operation changes the values

in the gates E and F from 01 to 00, and from 10 to 11 as shown in

Fig. 6. Then we can obtain four additional sub-patterns, 0000, 1000,

1111, and 1110 in the overlapped inputs.

5) Mergence & Mutation: After generating a lot of sub-patterns,

we then merge multiple sub-patterns to form a complete pattern. If

the overlapped inputs of two sub-patterns are identical, we directly

merge these two sub-patterns as shown in Fig. 7(a). Otherwise, we

randomly set the conflict bits as 0 or 1 as shown in Fig. 7(b).

After having patterns in the population from these five steps of GA,

Fig. 6. An example for the step of Crossover.

Fig. 7. An example for the step of Mergence & Mutation.

we then verify whether these patterns can detect the fault or setting

the non-controlling values to more side inputs of the fault propagation

path from the AND gate tree. If the fault is detected, we terminate

the algorithm. If more side inputs are assigned the non-controlling

values, the pattern quality is improved and we proceed to the next

iteration; otherwise, we remove the patterns that make less number

of side inputs having the non-controlling values from the population.

C. Overall Flow

Fig. 8 is the overall flow of our work. The inputs are a circuit and

a fault. We first select a path with higher probability to propagate the

fault and build the corresponding AND gate tree. Then we perform

random simulations and check the output value of root gate of the

tree. If the output value is 1, the fault is detected; otherwise we

perform the GA. If the new patterns from the GA is able to detect

the fault, the algorithm is terminated; otherwise the next GA iteration

will be performed again.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in C++. The benchmarks are from

the ISCAS’85 [1]and ITC’99 [2]. The experiments were conducted

on an Intel CoreTM2 Quad 2.5 GHz Linux platform (Ubuntu 10.10).

We conducted two experiments in this work. The first one is to show

whether the generated new patterns can detect the living mutants

based on our mutant modeling in the environment of a commercial

tool, CertitudeTM [3]. The second one is to show whether the proposed

GA approach can be used as an effective pattern generator for hard-

to-detect faults in testing. The flow of the first experiment is shown

in Fig. 9. We first generate random patterns to detect the mutants in

the design under the Certitude environment. The considered mutants

are those discussed in Section II.A. For the living mutants, we model

them as faults as mentioned and generate additional patterns by the

GA. Then we add these generated patterns into the testbench again

and check if these mutants are detected or not. The experimental

results are shown in Table I. Column 2 lists the number of the total

faults after the mutant modeling. Column 3 lists the number of faults

detected by the random patterns and the random patterns plus GA

patterns. Column 4 lists the pattern numbers. According to Table I,

we find that more living mutants are detected in the Certitude report

after adding the generated GA patterns into the testbench.

For the second experiment, we first perform the PODEM algorithm

to collect hard-to-detect faults. These hard-to-detect faults are the

fault that are not detected under the condition of backtrack limit =

10
8. Thus, only a few hard-to-detect faults are identified and listed

in Table II. Columns 2 and 3 list the number of the PIs and the

number of the gates in the circuit. Column 4 lists the fault and its

faulty value. Column 5 lists the total number of the side inputs on the

selected propagation path. Column 6 lists the CPU time by applying

the PODEM and the proposed GA algorithm to detect the fault.

For example in B20, the hard-to-detect fault is n16234→n16227,

stuck-at 1. There are 19 side inputs on the propagating path. Our GA

approach spent 358.89 seconds to detect the fault while the PODEM

did not detect the fault within 1537.10 seconds. According to Table
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Fig. 8. Our overall flow.

Fig. 9. The flow of the mutant detection.

II, our GA approach can generate effective patterns for these hard-

to-detect faults.

V. CONCLUSION

Living mutant detection is an important task in the Mutation

Analysis. However, commercial EDA tools have not addressed this

issue yet. In this paper, we propose a Genetic Algorithm to generate

patterns for detecting living mutants in the designs. The experimental

results show that the GA approach can generate effective patterns to

kill the living mutants in the designs.
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